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 
Abstract—Lung field segmentation in chest radiographs (CXRs) 

is an essential preprocessing step in automatically analyzing such 
images. We present a method for lung field segmentation that is 
built on a high-quality boundary map detected by an efficient 
modern boundary detector, namely, a structured edge detector 
(SED). A SED is trained beforehand to detect lung boundaries in 
CXRs with manually outlined lung fields. Then, an ultrametric 
contour map (UCM) is transformed from the masked and marked 
boundary map. Finally, the contours with the highest confidence 
level in the UCM are extracted as lung contours. Our method is 
evaluated using the public JSRT database of scanned films. The 
average Jaccard index of our method is 95.2%, which is 
comparable with those of other state-of-the-art methods (95.4%). 
The computation time of our method is less than 0.1 s for a 256 × 
256 CXR when executed on an ordinary laptop. Our method is 
also validated on CXRs acquired with different digital 
radiography units. The results demonstrate the generalization of 
the trained SED model and the usefulness of our method. 
 

Index Terms—chest radiography, lung field segmentation, 
boundary detection, structured edge detector 
 

I. INTRODUCTION 
HEST radiography (chest X-ray) is a diagnostic imaging 
technique widely used for lung diseases. The automatic 

segmentation of lung fields has received considerable attention 
from researchers as an essential preprocessing step in 
automatically analyzing chest radiographs (CXRs) [1-7]. An 
accurate automatic segmentation of lung fields can save 
physicians’ efforts for manual identification of the lung 
anatomy. In addition, this process is a necessary component of 
a computer-aided diagnosis system for detecting lung nodules 
[8]. The segmentation of lung fields is also useful for the 
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anatomic region-based processing of CXRs, such as contrast 
enhancement of lung regions and bone suppression [10]. 

However, an accurate segmentation of lung fields in CXRs 
remains a challenge for several reasons. Lung fields exhibit 
large anatomical shape variations, including varying heart 
dimensions or other pathologies, across different patients in 2D 
radiographs. Lung fields in CXRs also contain several 
superimposed structures, such as lung vasculatures, clavicles, 
and ribs, which do not form the borders of lung fields. The 
strong edges at the rib and clavicle regions may result in 
inaccurate location of landmarks or inaccurate lung contours in 
some lung field segmentation approaches. In addition, 
segmenting the lung apex is difficult because of the varying 
intensities in the upper clavicle bone region. 

Many lung field segmentation methods have been proposed 
for posterior–anterior (PA) CXRs to address these difficulties. 
These methods can be roughly divided into five categories: (1) 
rule-based methods, (2) pixel classification (PC)-based 
methods, (3) shape model-based methods, (4) hybrid methods, 
and (5) atlas-based methods. Rule-based segmentation methods 
[2, 3] contain sequences of steps and rules, such as thresholding 
or morphological operations. These methods have heuristic 
assumptions and compute approximate solutions below the 
global optimum. PC-based methods identify lung field 
segmentation as a classification problem and thus acquire a 
classifier to label each pixel as lung or background [4]. Most 
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Fig. 1.  Examples of lung field segmentation by the proposed SEDUCM 
method. From left to right: CXRs, corresponding boundary maps produced by 
a trained SED, and segmentation results. Red and blue contours indicate the 
ground truth and automatic segmentation results, respectively. 
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classification errors on the pixels around the boundaries of lung 
fields lead to inaccurate locations. Active shape models (ASM) 
and active appearance models (AAM) can incorporate 
low-level appearance cues and high-level shape priors, and 
have been successfully applied to lung field segmentation [4, 6]. 
In general, shape model-based methods tend to produce 
average shapes and are ineffective with abnormal cases. The 
segmentation performance of shape models relies on the 
approximation accuracy of the initial model. Hybrid methods 
produce improved results by fusing several techniques, but the 
segmentation algorithm is sophisticated and time consuming 
[4]. A recent study has introduced an atlas-based method that 
exhibits state-of-the-art performance; in this method, the CXR 
database of pre-segmented lung fields is used as the anatomical 
atlas, and the SIFT Flow algorithm is employed to align the 
CXR with the atlas [1]. In general, atlas-based methods are very 
time consuming. Lung segmentation can be refined through 
post-processing typically by using graph cuts [1, 12]. Among 
the energy functions for graph cuts, the boundary term is 
critical to improve segmentation accuracy. An accurate 
detection of lung boundaries is crucial to realize an accurate 
and simple automatic segmentation of lung fields. 

However, lung boundaries are not always located on 
well-defined edges, where the gradient magnitude is maximum 
along the gradient direction. Simple gradients or derivatives of 
CXRs are insufficient for handling many anatomical structures 
and textures. Hence, an accurate detection of lung boundaries in 
CXRs is traditionally considered to be highly difficult. The 
classical Canny edge detector [13] and other edge detection 
methods based on image derivatives from CXRs can detect the 
edges not only along the borders of the lung but also along the 
borders of other anatomical structures such as the ribs and 
clavicles, which are almost not close contours. From the edges 
detected by the Canny edge detector, the candidate segments of 
lung boundaries are selected by the sophisticated rule-based 
reasoning method as in Ref. [3]. Tsujii et al. [14] developed a 
supervised lung boundary detector that uses 1D convolution 
neural networks trained to classify the pixels in CXRs into lung 
boundaries or otherwise. However, the detected lung 
boundaries in [14] are still not continuous and cannot be 
transformed directly to the lung segmentation. 

Modern boundary detectors, such as Pb [15], structured edge 
detector (SED) [16], DeepEdge [17], and HED [18], are 
different from the classical Canny edge detector because these 
detectors emphasize the importance of suppressing false edge 
responses through an explicit oriented analysis of higher-order 
statistics. These statistics are obtained in various ways, 
including supervised learning. Such boundary detectors can 
benefit from global normalization provided by graph-spectral 
analysis or ultrametric consistency. These analyses enforce 
closure, thereby boosting the contrast of contours that 
completely enclose salient regions [19]. Most modern 
boundary detectors can be trained and provide a feasible way to 
detect the boundaries of particular objects. Among these 
modern boundary detectors, SED emerges as a distinguished 
system for edge detection because of its state-of-the-art 

performance and high speed [16]. 
In the present work, we aim to develop an accurate method 

for the real-time segmentation of lung fields in standard PA 
CXRs for practical applications. Unlike previous methods that 
use PC or shape models, we initially detect lung boundaries and 
then produce segmentation results from the detected boundary 
map. We select SED, which can be trained on samples of 
manually outlined lung fields, to detect lung boundaries 
efficiently. Lung contours are then extracted from an 
ultrametric contour map (UCM) [20], which is transformed 
from the boundary map detected by a trained SED and 
marker-controlled watershed transform (MWT) [21]. Our 
proposed method for lung field segmentation is called 
SEDUCM. In the SEDUCM segmentation pipeline, PC and 
initialization of shape models are not necessary. Fig. 1 shows 
two examples of the boundary maps detected by the trained 
SED and the segmentation results of lung fields through 
SEDUCM. 

The remainder of this paper is organized as follows. The 
framework and details of our method are described in Section 2. 
Experimental results are provided in Section 3. The summary 
and discussion of results are shown in Section 4. 

 

II. METHODS 

A. Overview 
This work aims to develop a practical and useful method for 

automatically segmenting lung fields in CXRs. The core of our 
proposed method is the effective use of the lung boundary map 
produced by SED. As shown in Fig. 2, an input CXR was first 
normalized into the intensity range [0, 1] and decomposed as 
the input of SED to the base and detail layers by a guided filter 
[22]. Next, a boundary map was produced by the SED model 
trained for detecting the boundaries of lung fields. From the 
boundary map and the input CXR, the ribcage and spinal 
centerline were extracted. These segments were used to 
partition the CXR into the right and left thorax areas as well as 
clean the boundary map for further processing. Subsequently, 
the candidate lung regions and contours were generated by 
using MWT and UCM transforms (mwt-ucm). Finally, the 
contours with the highest confidence level were selected as the 
right and left lung contours. To effectively perform 
segmentation, each step of the proposed method employed 
highly efficient algorithms for executing the corresponding 
functions, including guided filter [22], dynamic programming, 
and watershed transform (WT). 
 

 
Fig. 2.  Flowchart of our proposed method for lung field segmentation. 
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B.  SED for Detecting Lung Boundaries 
We first reviewed the SED proposed by Dollár and Zitnic 

[16]. Dollár and Zitnic formulated the edge detection task in a 
general structured learning framework where a random 
decision forest [23, 24] is exploited to general structured output 
spaces. SED has the advantage of the inherent structure in edge 
patches and can be computed efficiently. 

A decision tree ft (x) classifies an input x∈ by splitting the 
data between the left and right sub-trees according to a binary 
split function h(x, θj) with parameter θj at each node j. Given a 
node j and a training set S⊂×, the training goal of the 
decision tree is to find parameter θj that maximizes the 
information gain criterion Ij defined by 

Ij = I(Sj, SjL, SjR),                              (1) 
At each internal node of the tree, a feature is chosen to split 

the incoming training samples to maximize some criteria. A 
random decision forest comprises multiple independent 
decision trees [23, 24]. Given a sample, the predictions from the 
set of decision trees are combined into a single output by using 
an ensemble model. 

Dollár et al. [16] extended random forests to structured 
random forests for predicting structured outputs. Given an 
image patch x∈, the output y∈ stores the corresponding 
segmentation mask or binary edge map. A segmentation mask 
is denoted by y∈= d×d and a binary edge map is represented 

by y'∈' = {0, 1}d×d, where d is the patch width. The main goal 
of structured random forests is to map all structured labels to a 
discrete set c∈. Dollár et al. solved this problem by first 

mapping the structured output space  to an intermediate space 

. z = Π(y) is defined as a long binary vector that encodes 
whether each pair of pixels in y belongs to the same or different 
segments. The problem with the high dimensionality of the 
structured output space  is alleviated by sampling a few 

dimensions of  followed by conducting principal component 

analysis (PCA). Then, the intermediate space  is mapped to 

the discrete label space  by PCA quantization. Thus, the 
standard information gain criteria based on Gini impurity can 
be adopted to train structured random forests. In a trained 
structured random forest, the learned edge masks y' are 
averaged as a soft edge response and stored at each left node. 
Although SED is originally designed to detect general edges on 
natural images, it can be adopted to detect the boundaries of 

particular objects, such as lung boundaries in CXRs. 
We began by decomposing an input CXR into its base and 

detail layers using a guided filter as shown in Fig. 3. The guided 
filter performs edge-preserving smoothing on an image like the 
bilateral filter, using the content of a guidance image, to 
influence the filtering. One advantage of the guided filter is that 
it can be implemented efficiently through integral image 
technique. We used the input CXR itself as the guidance image, 
and the kernel radius and the regularization coefficient of the 
guided filter were set to 8 and 0.1, respectively. The base layer 
is for extracting coarse-scale features of the input CXR, 
whereas the detail layer is for extracting fine-scale features. 
These two layers were normalized to zero mean and one 
variance as the input feature maps of SED. The feature 
extraction and the SED training approach presented in Ref. [16] 
were adopted in this work. The SED predicted the centered 16 × 
16 lung boundary response from a 32 × 32 × 2 image patch. 
Each image patch was augmented to obtain 12 channels, 
including 2 input channels, 2 gradient magnitude channels, and 
8 gradient orientation channels. A total of 6,672 candidate 
features were efficiently extracted from a 32 × 32 × 12 patch, 
similar to that in Ref. [16]. 

Fig. 4 shows 256 randomly selected patches of the lung 
boundary response in the leaf nodes of a learned structured 
random forest. Each patch of the boundary response exhibits 
the shape characteristics of particular locations along the lung 
boundaries. Compared with a global shape model, the patches 
of the boundary response can be viewed as local shape 
fragments and are more flexible to composite the lung contours. 

 
Fig. 3.  Intermediate results of an input CXR in SEDUCM pipeline. 

  

 
Fig. 4.  Examples of boundary patches in the leaf nodes of the trained SED. 
The red rectangles indicate some representative boundary fragments which 
locate along the lower lobes of lung. 
  



2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2687939, IEEE
Journal of Biomedical and Health Informatics

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 
 

4

During the prediction stage, the image patches are sampled 
densely from the base and detail layers of an input CXR, and 
SED predicts their corresponding patches of boundary response. 
Then, the overlapped patches of boundary response were 
averaged and aggregated to yield a map of soft boundary 
response. The efficiency of SED can be further improved by 
reducing the number of densely sampled image patches and the 
number of decision trees evaluated during the prediction stage 
since both the inputs and outputs of each decision tree overlap. 
Similar to the settings in [16], the stride of image patch 
sampling was set to 2 pixels and an alternating subset of 
decision trees was evaluated on the sampled image patches at 
each adjacent location. The procedure of  predicting boundary 
map for a CXR is described in Algorithm I. 

 Dollár et al. [16] proposed a sharpening procedure on the 
boundary map using local color or intensity cues. However, 
sharpening the boundary map would lead to less smooth lung 
contours and degrade the segmentation performance. Therefore, 
the lung boundary maps predicted by SED were not sharpened 
but rather slightly smoothed using a triangle filter with a kernel 
size of 1 pixel in our work. Examples of boundary maps 
detected by the trained SED are shown in Figs. 1 and 5. An 
edge map detected by the Canny edge detector for a CXR is 
shown in Fig. 5(c). The borders of the ribs and body were 
identified as the edges by the Canny edge detector. The trained 
SED can effectively distinguish the lung boundaries from the 
other structures. The response values along the lung contours 
are significantly larger than other regions in the boundary map 
produced by SED. 

 

C. Finding Thorax Centerline and Ribcage for Partition 
Although high-quality lung boundary maps can be produced 

using the trained SED, false responses for lung boundary still 
exist, as shown in Figs. 1 and 5. Many irrelevant regions are 
evident among the regions generated by WT directly from the 
original boundary map. In particular, false strong boundary 
responses complicate the subsequent selection of correct 
regions as lung fields. We determined the thorax centerline and 
the ribcage boundary to filter out irrelevant boundary responses 
and delimit the search area for the right/left lung field. 
Consequently, the effect of false boundary responses was 
reduced. We defined specific energy functions as the thorax 
centerlines and the ribcage boundaries to search for minimum 
cost paths using dynamic programming. 

We determined the thorax centerline in a CXR based on high 
intensity values and low boundary responses in spinal regions. 
This finding led to the following simple energy function of an 
input CXR I: 

e(I) = 1 − Ib + B,                               (2) 
where Ib is the base layer of I, and B is the boundary map of 
CXR I. We defined the cost of an 8-connected path s as: 

1

( ) ( ) ( )
m

k
k

C s e s s


   ,                         (3) 

where ( )s  denotes the length of s, ν is a tunable parameter, 
and m is the row number of CXR I. We searched for the optimal 
path s∗ that minimizes this cost: * min ( )

s
s C s . The second 

term ( )s  in the cost C(s) was used to render the optimal path 
less zigzag. ν was set to 0.3 in the experiments. The optimal 
path can be found using dynamic programming. Traversing the 
energy map from the second row to the last row, we calculated 
the cumulative minimum energy C for all possible 8-connected 
paths for each entry (i, j): 

 
( , ) ( , )

min ( 1, 1) 2 , ( 1, ) , ( , 1)

C i j e i j

C i j C i j C i j  

 

      
.     (4) 

The minimum value of the last row in C indicates the end of 
minimum cost path. Then, we traced back from the minimum 
entry on C to find the optimal path as the thorax centerline. To 
reduce computation time and avoid finding unreasonable 
thorax centerlines, the search range of the optimal paths was 
limited in the area from n/3 to 2n/3 columns in a CXR of m × n 
pixels similar to [25]. 

 
Fig. 5.  Example of boundary map produced with the trained SED and edge 
map detected by the Canny edge detector. 
  

Fig. 6.  Determination of the ribcage top. In (a), the blue line presents the 
horizontal intensity profile at 1/3 of image height of the base layer of a CXR, 
and the small red circle indicates the center point for polar transformation. The 
two dashed red semicircles in (b) delimit the sampling range of polar
transform. (c) Polar transform result from (b). The optimal path overlaid on 
the energy function is displayed in (d). The red line is the detected boundary of 
lung top in Cartesian coordinates in (e). 
  

ALGORITHM I. PREDICTING BOUNDARY MAP 
Input:  I, a CXR. T, the total tree number of the trained SED model. 

Teval, the evaluation number of trees. 
Output:  E, the soft boundary map. 
1:  Decompose I into the base layer B and the detail layer Ib. 
2:  Sample densely the patches {pi} of size 32×32×2 from B and Ib 

with stride 2. 
3:  for each patch pi at location (ri, ci) do 
4:      compute the indices of trees {k=mod(mod(ri+ci, 2×Teval)+t, T), 

t=0, 1, 2, ..., Teval−1}. 
5:        apply the subset {k} of decision trees in the trained SED model 

to the patch pi and predict the corresponding patch bi of 
boundary response. 

6:  end for 
7:  aggregate and average the overlapped patches {bi} of boundary 

response to yield the soft boundary map E. 
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The produced lung boundary map provided sufficient cues to 
identify the ribcage. We first determined the top of the ribcage 
similar to [2]. Considering that the top of the ribcage was more 
or less circular, we realized the polar transformation of a 
hemicircle in the boundary map to 128 × 180 pixels for the 
CXRs of 256 × 256 pixels and then applied dynamic 
programming to find the optimal path. Fig. 6 shows the 
computation of the center point and the radius for polar 
transformation. The radius of the hemicircle was estimated 
from the intensity profile in the base layer at 1/3 height. We 
denoted the point with the maximum value on the intensity 
profile as the center point. Two peaks of the intensity profile on 
the sides of the center point indicated the rough positions of the 
right and left ribcages at 1/3 height. The maximum distances (d1 
and d2 in Fig. 6(a)) from these two peak locations to the center 
point were computed as the hemicircle radius. The minimum 
radius r and the maximum radius R (Fig. 6(b)) were set as 0.5 
and 1.4 times the radius for polar transformation, respectively. 
Fig. 6(c) shows the corresponding polar transformation of the 
hemicircle region in the boundary map. We regarded the first 
derivative along the circle radius of the polar transformation 
image as the energy function for the ribcage top. Similar to 
finding the thorax centerline, the optimal path was determined 
by traversing the energy map from the second column to the last 
column using dynamic programming (Fig. 6(d)). 

To determine the left ribcage boundary, we used the end 
points of the top ribcage boundary as the starting points of the 
optimal paths. The optimal paths were searched in the 
rectangular regions. We used the first derivatives along the 
vertical direction of the boundary map to define the cost 
functions. For the left/right ribcage boundary, the cost function 
was regarded as the first forward/backward derivative of the 
boundary map. The minimum cost path was determined 
through dynamic programming. We also located the minimum 
peak on the bottom of vertical projection of boundary map to 
delimit the area for selection of the lung contours. 

We divided each CXR into right, left, and irrelevant areas 
using the detected ribcage contour and thorax centerline, as 
shown in Fig. 7(b). To assure that the lung fields are included in 
the detected ribcage, we enlarged the ribcage using the 
morphologic dilatation operation as shown in Fig. 7(a). The 
responses in the irrelevant areas, i.e., gray regions in Fig. 7(b), 
of the boundary map were masked out and reset to 0. 
 

D. mwt-ucm: From Boundary Map to Segmentation of Lung 
Fields 

Once obtained, a boundary map can be utilized for 
segmentation through several means. However, lung boundary 
maps predicted by SED are diffused in certain areas. Retrieving 
segmentation masks from boundary maps is not a 
straightforward process. The edges produced using ordinary 
techniques, such as non-maximum suppression from a 
boundary map, may not be closed. Thus, the edges do not 
separate the image into regions. Another approach is to 
integrate a boundary map into the pixel or region probability for 
labeling in a maximum-a-posteriori framework. However, the 
trade-off between the region and boundary constraints produces 
smooth contours, which may not appear in real object 
boundaries. We opted to create candidate regions or 
segmentation masks directly from a boundary map by using the 
over-segmentation or superpixel approaches. WT can be 
implemented efficiently and effectively; thus, we applied WT 
to generate over-segmentation from the boundary map. The 
traditional WT typically produces an excessive number of 
small irrelevant regions. To reduce the number of such regions, 
we use MWT to produce over-segmentation regions from the 
boundary map. We set the pixels of boundary response values 
less than 0.01 as the markers. Each marker indicates a specific 
location within the boundary map which is modified by using 
the minima imposition technique [21]. The modified boundary 
map only has regional minima in the locations of the markers. 
Then, the traditional WT is applied to the modified boundary 
map to obtain segmentation in the belt between the markers. An 
example of the regions produced from a masked boundary map 
by WT and MWT is presented in Fig. 8. 

We adopted the contour-based hierarchical segmentation 
method proposed by Arbelaez et al. [19, 20] to generate 
candidate segments of lung field from the MWT or WT of the 
masked boundary map. The result of this hierarchical 
segmentation method is a weighted contour image called UCM, 
the values of which reflect contour strength and the contrast 
between neighboring regions [19]. This method generally 
preserves the global contours of objects while providing 
hierarchical segments. Such segments are obtained using a 
greedy graph-based region merging algorithm. Let G(P0, K0, 
W(K0)) denote an initial graph, where the nodes are the regions 
P0 generated by WT or MWT, the links are the arcs K0 
separating adjacent regions, and the weights W(K0) are a 
measure of dissimilarity between two adjacent regions which is 
defined as the average boundary response of SED of their 
common boundary in K0. The algorithm proceeds by iteratively 
merging the most similar regions, and produces a tree of 

 
Fig. 7.  Ribcage contour and thorax centerline (a), as well as the corresponding 
mask (b) for subsequent processing. 
 

Fig. 8.  WT-UCM (b) and MWT-UCM (c) of a masked boundary map (a).
Red/blue color indicates high/low UCM value. 
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regions, where the leaves are the initial elements of P0, the root 
is the entire image, and the regions are ordered by the inclusion 
relation [19]. A real-valued image is obtained by weighting 
each boundary by its scale of disappearance as the UCM, which 
has the remarkable property of producing a set of closed curves 
for any threshold. Hierarchical segmentations can be created by 
setting the UCM thresholds. Fig. 8 presents two examples of 
UCM with different over-segmentation regions P0.  

SED was trained to detect lung boundaries; hence, lung 
contours are expected to have high UCM values. On the 
right/left partition of a CXR generated from the detected 
ribcage and thorax centerline, the contour with the highest 
UCM value was selected as the right/left lung contour. 
 

E. Evaluation Metrics 
We used three widely used metrics to evaluate our SEDUCM 

method quantitatively and compare it with other lung 
segmentation methods, namely, the Jaccard index (Ω), the Dice 
similarity coefficient (DSC) [26], and the mean boundary 
distance (MBD). These metrics were defined and computed as 
follows. 

Let us denote S as the estimated segmentation mask and T as 
the ground truth mask. Jaccard index was computed as: 

S T
S T

 



, 

where || is the cardinality of the set, S T  is the intersection 
of S and T, and S T  is the union of S and T. DSC is the 
overlap ratio between the ground truth mask T and the 
estimated segmentation mask S: 

2 S T
DSC

S T






. 

MBD is the average distance between the estimated 
segmentation boundary S and the ground truth boundary T. Let 
si and tj be the points on boundaries S and T, respectively. The 
minimum distance of point si on S to boundary T was computed 
as: 

( , ) mini i jj
d a T a t  . 

For MBD computation, the minimum distance for each point on 
boundary S to boundary T was calculated, and vice versa. These 
minimum distances were averaged as MBD: 

( , )( , )1( , )
2 { } { }

ji ji

i j

d t Sd s T
MBD S T

s t

 
  
 
 

 . 

 

III. EXPERIMENTS 

A. Experimental Datasets and Settings 
The proposed SEDUCM method was evaluated on three 

CXR datasets. The first dataset is the publicly available 
Japanese Society of Radiological Technology (JSRT) dataset 
[27]. The JSRT dataset consists of 247 standard PA CXRs that 
are scanned from plain film radiographs to a size of 2048 × 
2048 pixels, with a spatial resolution of 0.175 mm and 12 bit 

gray levels. The manual segmentation of lung fields for CXR in 
the JSRT dataset is available at http://www.isi.uu.nl/Research 
/Databases/SCR/. The JSRT dataset is divided into two folds: 
fold 1 (124 images) and fold 2 (123 images). We used the 
two-fold cross-validation method to evaluate the segmentation 
performance. The second dataset is the Chest Radiograph 
Anatomical Structure Segmentation (CRASS) dataset 
(http://crass.grand-challenge.org/). The CRASS dataset 
consists of 548 PA CXRs without manual segmentation of lung 
fields from a database containing images acquired at two sites 
in sub Saharan Africa with high tuberculosis incidence. Images 
from digital radiography (DR) units were used (Delft Imaging 
Systems, The Netherlands) with a typical size of 1800 × 2000 
pixels and a spatial resolution of 0.25 mm. The third dataset 
includes 650 PA CXRs acquired using three types of DR 
systems (Discovery XR656, GE Healthcare; FD-X, Siemens 
Healthcare; T-D3000, SONTU Medical Imaging) in 
Guangdong, China. 18 manual segmentation of the lung fields 
was performed in this dataset; such segmentation was used to 
evaluate the cross-data set generalization of the proposed 
method qualitatively. Similar to most studies [1, 6, 9], we 
downscaled the original radiographs in the JSRT database to 
256 × 256 pixels in the experiments. Thus, the pixel size 
became 1.4 mm. Image downsampling to a lower resolution 
prior to segmentation significantly speeds up runtime without 
compromising accuracy. 

We trained one SED on each fold of the JSRT dataset. The 
maximum number of trees in the SED was set to 8, and the 
maximum depth of trees was set to 16. The minimum sample 
number of leaf nodes was set to 8. A total of 0.2 million positive 
patches (in which lung boundaries existed) and 0.2 million 

 
Fig. 9.  Segmentation performance of SEDUCM with different settings on the 
JSRT dataset. 
 



2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2687939, IEEE
Journal of Biomedical and Health Informatics

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 
 

7

negative patches were randomly selected as training samples 
for each SED. Experiments were conducted on a laptop with 
Intel Core i7 CPU (2.3 GHz) and 8 GB RAM. Executions were 
performed using MATLAB 2014b with the toolboxes  provided 
by Piotr Dollár (https://pdollar.github.io/toolbox/; 
https://github.com/pdollar/edges). The training time of each 
tree was approximately 5 min. Decision trees were evaluated in 
parallel in the prediction stage. The codes for our SEDUCM 
method and the trained SED models for lung field segmentation 
are available online 
(https://github.com/SMU-MedicalVision/SEDUCM). 

 

B. Performance of Our Proposed Method 
In Fig. 9, we identified the effect of the numbers of evaluated 

trees and the variants of UCM on the segmentation 
performance. The numbers of evaluated trees varied from 2 to 8. 
Applying MWT or WT on a boundary map masked/unmasked 
by the ribcage mask produced four variants of UCM: MWT 
with mask, MWT without mask, WT with mask, and WT 
without mask. Fig. 9 shows how varying parameters and UCM 
variants affect the Jaccard index, DSC, BMD, and computation 
time. High Jaccard indices and small MBD values were 
achieved by evaluating numerous trees when UCM was 
generated from MWT on the masked boundary map. DSC 
highly correlated with the Jaccard index. The effect of false 
strong boundary response on the constant merging procedure of 
UCM was effectively reduced by MWT and masking out the 
irrelevant areas. Thus, the use of MWT with mask produced the 
best segmentation results for different numbers of evaluated 
trees. 

When the number of evaluated trees was greater than 4, all 
three segmentation evaluation metrics were marginally 

improved; however, additional computation time was needed. 
The segmentation results from the UCM through WT on the 
unmasked boundary maps were the worst. The values of 
corresponding three evaluation metrics were out of the 
displayed ranges shown in Figs. 9(a)–9(c). MWT led to a more 
efficient segmentation than WT on the same boundary maps. 
MWT without the step to find the ribcage was the most efficient 
strategy as shown in Fig. 9(d). When four trees were evaluated, 
the average numbers of segments per CXR produced by MWT 
and WT (with/without mask) were 6.5/31.5 and 134.3/336.2, 
respectively. The computation time for UCM generation was 
reduced when fewer segments were merged and processed. 

The majority of the computation time of the SEDUCM 
segmentation procedure was spent during CXR preprocessing 
and the generation of the ribcage mask and UCM from the 
boundary map. Increasing the number of evaluated trees 
marginally increased the computation time of SEDUCM 
segmentation (from 0.075 s to 0.12 s) as shown in Fig. 9(d). 
Reliable segmentation results and reasonable performance can 
be achieved with four evaluated trees as compared with eight 
evaluated trees. Consequently the results of setting the number 
of evaluated trees to four and using UCMs generated by MWT 
from the masked boundary maps are reported in the rest of this 
paper. The average Jaccard index and DSC are 95.2% and 
97.5%, respectively. The Jaccard indices for most cases are 
approximately 95%, whereas those for a few cases are less than 
90%. Fig. 10 illustrates the visual quality of the extracted lung 
contours from one test set of JSRT dataset. 

 

C. Comparison With Other Methods for Lung Field 
Segmentation 

Van Ginneken et al. [4] reported the quantitative results of 
several segmentation methods, including PC, ASM, AAM, 
hybrid voting, and human observation. Recently, the SIFT 
Flow algorithm for dense correspondence has been applied to 
lung segmentation in CXRs with excellent performance [1]. 
Shao et al. [6] proposed another method for lung field 

TABLE I 
PERFORMANCE OF LUNG FIELD SEGMENTATION IN TERMS OF JACCARD INDEX (Ω), 
DSC, MBD, AND COMPUTATION TIME ON CPU ON THE JSRT DATASET. VALUES 

(BESIDES COMPUTATION TIME) ARE REPORTED AS MEAN ± STANDARD DEVIATION. 

Method Ω 
(%) 

DSC 
(%) 

MBD 
(mm) 

time 
(s) 

SEDUCM 95.2±1.8 97.5±1.0 1.37±0.67 <0.1 
SIFT-Flow [1] 95.4±1.5 96.7±0.8 1.32±0.32 20~25 

MISCP [5] 95.1±1.8 / 1.49±0.66 13~28 
Hybrid voting [9] 94.9±2.0 / 1.62±0.66 >34 

Local SSC [6] 94.6±1.9 97.2±1.0 1.67±0.76 35.2 
Human observer [9] 94.6±1.8 / 1.64±0.69 / 

GTF [11] 94.6±2.2 / 1.59±0.68 38 
InvertedNet [28] 94.6 97.2 0.73 7.1 

PC post-processed [9] 94.5±2.2 / 1.61±0.80 30 
ASM tuned [9] 92.7±3.2 / 2.30±1.03 1 
ASM_SIFT [9] 92.0±3.1 / 2.49±1.09 75 

AAM whiskers [9] 91.3±3.2 / 2.70±1.10 3 
 

Fig. 10.  Examples of lung field segmentation results by SEDUCM on the 
JSRT dataset. Red and blue contours indicate the ground truth and automatic 
segmentation results, respectively. 
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segmentation by learning local sparse shape and appearance 
models; this method outperformed conventional shape and 
appearance models. However, the two latter state-of-the-art 
methods are time consuming (over 20 s for a CXR with 256 × 
256 pixels). Recently, Novikov et al. [28] trained the 
convolutional neural networks to segment the anatomical 
structures in CXRs. A model called InvertedNet in [28] 
achieved the average Jaccard index of  94.6% for lung field 
segmentation on the JSRT dataset. The computation times of 
the InvertedNet for each CXR were 7.1 s on CPU and 0.06 s on 
GPU. As listed in Table I, the average Jaccard index and DSC 
of our proposed SEDUCM on the JSRT dataset are 95.2% 
(±1.8%) and 97.5% (±1.0%), respectively. Our SEDUCM 
method is comparable with the atlas-based method [1] in terms 
of the aforementioned evaluation metrics. In addition, 
SEDUCM outperforms all the methods based on shape model, 
such as ASM, ASM-SIFT [4], and MISCP [5]. The average 
computation time of SEDUCM pipeline including all steps in 
Fig. 2 for an input  CXR with 256 × 256 pixels is less than 0.1 s. 
Our SEDUCM method is faster than all other methods 
according to the reported computation time on CPU in the 
related literatures without considering of running environments 
and computers for different methods. With regard to 
segmentation accuracy, only SEDUCM fulfills the practical 
requirement of real time.  

 

D. Cross-dataset Generalization 
To validate the generalization of SEDUCM, we used the 

SED that was trained on fold 1 of the JSRT database. There 
were ten cases of raw data in the third dataset which had not 
been processed by the enhancement algorithms. For these  
images of raw data, negative logarithm transform was applied 
on intensity values to compress the dynamic range for 

subsequent processing. The DR radiographs were downscaled, 
and pixel size became 1.4 mm. The radiographs were then 
normalized and fed to the aforementioned SED. Figs. 11 and 12 
illustrate the segmentation examples from the two datasets of 
digital CXRs. The scanned film radiographs in the JSRT 
database and the DR radiographs for cross-dataset validation 
are considerably different. The DR radiographs we collected 

Fig. 11.  Segmentation results of SEDUCM on the CRASS dataset. 
 

Fig. 12.  Segmentation results of SEDUCM on the CXRs acquired by different 
DR units. (a) Discovery GE XR656, (b) Siemens FD-X, (c) SONTU T-D3000, 
and (d) SONTU T-D3000 (raw data). Red and blue contours indicate the lung 
contours outlined by a radiologist and the automatic segmentation results, 
respectively.  
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have a significantly higher contrast than the CXRs in the JSRT 
database. In specific, many CXRs in the CRASS dataset were 
cases of abnormal lungs, and the imaging conditions were not 
thoroughly controlled. Although our SEDUCM method can 
provide reasonable segmentation results on many cases of the 
CRASS dataset, the method failed on some abnormal cases. 
One failed case is shown in Fig. 11. Extra post-processing rules 
should be developed to deal with these abnormal cases. 
SEDUCM can produce segmentation results effectively even in 
cases with abnormal lungs and raw data, as shown Fig. 12. 
These results provide evidence that the trained SED 
demonstrates good generalization capability and that the 
proposed SEDUCM method is effective and robust. 

 

IV. DISCUSSION AND CONCLUSION  
Our method for lung field segmentation employed structured 

random forests to detect lung boundaries. In principle, modern 
boundary detectors, such as DeepEdge [17], Oriented Edge 
Forests [29], and HED [18], can be trained to detect these 
particular boundaries of lung fields. Among modern boundary 
detectors, SED exhibits high efficiency, which promotes a fast 
and practical procedure of lung field segmentation. 

The segmentation performance of our method can be further 
improved. One technique is to combine pixel classification 
results and the boundary map detected by SED. Another 
approach is to combine shape models with the boundary map. 
However, computation time and algorithm complexity increase 
when these methods are used. A direct approach is to reduce the 
false boundary responses of SED. In general, a large number of 
training samples can lead to a relatively good performance of 
prediction models. We can collect many CXRs with the manual 
segmentation ground truth to train a SED. Variations in lung 
field boundaries can be effectively identified using the trained 
SED. 

The segmentation of abnormal lungs is typically difficult. 
We should develop appropriate rules to address abnormal cases 
and improve the robustness of SEDUCM. As shown in Fig. 11, 
our SEDUCM method produces some unreasonable lung 
contours. The resulting notches by the discontinuity of the 
detected lung contours can be linked by the smooth curves. 
Alternatively, the active contour model [30] with a few 
iterations can be applied to refine the lung contours but with a 
long computation time. 

In summary, we present an effective and efficient lung field 
segmentation method that can achieve state-of-the-art 
segmentation accuracy and fulfill the practical requirement of 
real time. Our method uses a SED to detect lung boundaries. 
The results demonstrate that effective detection of lung 
contours using SED and mwt-ucm transform is feasible. Our 
method can be adopted to simplify approaches for analyzing 
CXRs. 
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